Gibbs Free Energy and Entropy

1st law of Thermodynamics: Conservation of energy Energy can be changed from one form to another, but it cannot be created or destroyed.

\$\$\$ to do stuff energy work

chem energy heat, •H work

What happens to your room if you put no

energy into cleaning it?

If you tossed bricks off a truck, which kind of pile of bricks would you more likely produce?

Disorder is more probable than order.

movement fentropy +△S

movement **∫**entropy -∆S

2nd law of Thermodyanmics:

Randomness will increase without added energy to a system

The disorder (entropy, S) of an isolated system will tend to increase over time.

low entropy (high order)

solid
reactants in exothermic rxn
gallons of gas
prepared food
sunlight

high entropy(low order)
gas
products in exoth. rxn
carbon dioxide and water

unprepared food

Entropy --disorder/dispersal qualitatively, what is happening?

matter

- 0 entropy, S is perfect crystal at 0K no movement
- -dispersal

dissolving salt

-phase changes s<I<g

-stoichiometry
increase # of mole from reactant to product

$$N_2O_{4(g)} \rightarrow 2NO_{2(g)}$$
1 mole 2 moles

$$2H_2O_{(I)} \rightarrow 2H_{2(g)} + O_{2(g)}$$

energy

increased movement

$$\triangle G = \triangle H - T \triangle S$$

△G	ΔH	ΔS	T	△G =△H - T△S
_	_	+	all	- = - (+)
+	+	-	all	+=+ -(-)
_/+	+	+	depends	+ = + -(low T +) - = + -(high T+)
_/+	-	-	depends	— = — - (low T —) + = — - (high T —)